Problem10824--ABC150 - D - Semi Common Multiple

10824: ABC150 - D - Semi Common Multiple

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given are a sequence $A= {a_1,a_2,......a_N}$ of $N$ positive even numbers, and an integer $M$.
Let a semi-common multiple of $A$ be a positive integer $X$ that satisfies the following condition for every $k$ $(1 \leq k \leq N)$:
  • There exists a non-negative integer $p$ such that $X= a_k \times (p+0.5)$.
Find the number of semi-common multiples of $A$ among the integers between $1$ and $M$ (inclusive).

Input

Input is given from Standard Input in the following format:

```
$N$ $M$
$a_1$ $a_2$ $...$ $a_N$
```

Output

Print the number of semi-common multiples of $A$ among the integers between $1$ and $M$ (inclusive).

Constraints

-   $1 \leq N \leq 10^5$
-   $1 \leq M \leq 10^9$
-   $2 \leq a_i \leq 10^9$
-   $a_i$ is an even number.
-   All values in input are integers.

Sample 1 Input

2 50
6 10

Sample 1 Output

2
  • $15 = 6 \times 2.5 $
  • $15 = 10 \times 1.5 $
  • $45 = 6 \times 7.5 $
  • $45 = 10 \times 4.5 $
Thus, $15$ and $45$ are semi-common multiples of $A$. There are no other semi-common multiples of $A$ between $1$ and $50$, so the answer is $2$.

Sample 2 Input

3 100
14 22 40

Sample 2 Output

0
The answer can be $0$.

Sample 3 Input

5 1000000000
6 6 2 6 2

Sample 3 Output

166666667

Source/Category