10758: ABC139 - D - ModSum
[Creator : ]
Description
For an integer $N$, we will choose a permutation $\{P_1, P_2, ..., P_N\}$ of $\{1, 2, ..., N\}$.
Then, for each $i=1,2,...,N$, let $M_i$ be the remainder when $i$ is divided by $P_i$.
Find the maximum possible value of $M_1 + M_2 + \cdots + M_N$.
Then, for each $i=1,2,...,N$, let $M_i$ be the remainder when $i$ is divided by $P_i$.
Find the maximum possible value of $M_1 + M_2 + \cdots + M_N$.
Input
Input is given from Standard Input in the following format:
```
$N$
```
```
$N$
```
Output
Print the maximum possible value of $M_1 + M_2 + \cdots + M_N$.
Constraints
$N$ is an integer satisfying $1 \leq N \leq 10^9$.
Sample 1 Input
2
Sample 1 Output
1
When the permutation $\{P_1, P_2\} = \{2, 1\}$ is chosen, $M_1 + M_2 = 1 + 0 = 1$.
Sample 2 Input
13
Sample 2 Output
78
Sample 3 Input
1
Sample 3 Output
0