Problem10748--ABC137 - F - Polynomial Construction

10748: ABC137 - F - Polynomial Construction

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given are a prime number $p$ and a sequence of $p$ integers $a_0, \ldots, a_{p-1}$ consisting of zeros and ones.

Find a polynomial of degree at most $p-1$, $f(x) = b_{p-1} x^{p-1} + b_{p-2} x^{p-2} + \ldots + b_0$, satisfying the following conditions:

-   For each $i$ $(0 \leq i \leq p-1)$, $b_i$ is an integer such that $0 \leq b_i \leq p-1$.
-   For each $i$ $(0 \leq i \leq p-1)$, $f(i) \equiv a_i \pmod p$.

Input

Input is given from Standard Input in the following format:

```
$p$
$a_0$ $a_1$ $\ldots$ $a_{p-1}$
```

Output

Print $b_0, b_1, \ldots, b_{p-1}$ of a polynomial $f(x)$ satisfying the conditions, in this order, with spaces in between.

It can be proved that a solution always exists. If multiple solutions exist, any of them will be accepted.

Constraints

-   $2 \leq p \leq 2999$
-   $p$ is a prime number.
-   $0 \leq a_i \leq 1$

Sample 1 Input

2
1 0

Sample 1 Output

1 1

$f(x) = x + 1$ satisfies the conditions, as follows:

  • $f(0) = 0 + 1 = 1 \equiv 1 \pmod 2$
  • $f(1) = 1 + 1 = 2 \equiv 0 \pmod 2$

Sample 2 Input

3
0 0 0

Sample 2 Output

0 0 0
$f(x)=0$ is also valid.

Sample 3 Input

5
0 1 0 1 0

Sample 3 Output

0 2 0 1 3

Source/Category