Problem10730--ABC134 - F - Permutation Oddness

10730: ABC134 - F - Permutation Oddness

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Let us define the _oddness_ of a permutation $p$ = {$p_1,\ p_2,\ ...,\ p_n$} of {$1,\ 2,\ ...,\ n$} as $\sum_{i = 1}^n |i - p_i|$.

Find the number of permutations of {$1,\ 2,\ ...,\ n$} of oddness $k$, modulo $10^9+7$.

Input

Input is given from Standard Input in the following format:

```
$n$ $k$
```

Output

Print the number of permutations of {$1,\ 2,\ ...,\ n$} of oddness $k$, modulo $10^9+7$.

Constraints

-   All values in input are integers.
-   $1 \leq n \leq 50$
-   $0 \leq k \leq n^2$

Sample 1 Input

3 2

Sample 1 Output

2

There are six permutations of {$1,\ 2,\ 3$}. Among them, two have oddness of $2$: {$2,\ 1,\ 3$} and {$1,\ 3,\ 2$}.

Sample 2 Input

39 14

Sample 2 Output

74764168

Source/Category