10671: 洛谷P10111 - [GESP七级] [202312]纸牌游戏
[Creator : ]
Description
你和小杨在玩一个纸牌游戏。
你和小杨各有 $3$ 张牌,分别是 $0、1、2$ 。你们要进行 $N$ 轮游戏,每轮游戏双方都要出一张牌,并按 $1$ 战胜 $0$,$2$ 战胜 $1$,$0$ 战胜 $2$ 的规则决出胜负。第 $i$ 轮的胜者可以获得 $2×a_i$ 分,败者不得分,如果双方出牌相同,则算平局,二人都可获得 $a_i$ 分$(i=1,2,…,N)$ 。
玩了一会后,你们觉得这样太过于单调,于是双方给自己制定了不同的新规则。小杨会在整局游戏开始前确定自己全部 $n$ 轮的出牌,并将他的全部计划告诉你;而你从第 $2$ 轮开始,要么继续出上一轮出的牌,要么记一次“换牌”。游戏结束时,你换了 $t$ 次牌,就要额外扣 $b_1+…+b_t$ 分。
请计算出你最多能获得多少分。
你和小杨各有 $3$ 张牌,分别是 $0、1、2$ 。你们要进行 $N$ 轮游戏,每轮游戏双方都要出一张牌,并按 $1$ 战胜 $0$,$2$ 战胜 $1$,$0$ 战胜 $2$ 的规则决出胜负。第 $i$ 轮的胜者可以获得 $2×a_i$ 分,败者不得分,如果双方出牌相同,则算平局,二人都可获得 $a_i$ 分$(i=1,2,…,N)$ 。
玩了一会后,你们觉得这样太过于单调,于是双方给自己制定了不同的新规则。小杨会在整局游戏开始前确定自己全部 $n$ 轮的出牌,并将他的全部计划告诉你;而你从第 $2$ 轮开始,要么继续出上一轮出的牌,要么记一次“换牌”。游戏结束时,你换了 $t$ 次牌,就要额外扣 $b_1+…+b_t$ 分。
请计算出你最多能获得多少分。
Input
第一行一个整数 $N$,表示游戏轮数。
第二行 $ N$ 个用单个空格隔开的非负整数 $a_1,…,a_N$ ,意义见题目描述。
第三行 $N-1$ 个用单个空格隔开的非负整数 $b_1,\cdots,b_{N-1}$ ,表示换牌的罚分,具体含义见题目描述。由于游戏进行 N 轮,所以你至多可以换 $N-1$ 次牌。
第四行 $N$ 个用单个空格隔开的整数 $c_1,,\cdots,c_N$ ,依次表示小杨从第 $1$ 轮至第 $N$ 轮出的牌。保证 $c_i\in{0,1,2}$ 。
第二行 $ N$ 个用单个空格隔开的非负整数 $a_1,…,a_N$ ,意义见题目描述。
第三行 $N-1$ 个用单个空格隔开的非负整数 $b_1,\cdots,b_{N-1}$ ,表示换牌的罚分,具体含义见题目描述。由于游戏进行 N 轮,所以你至多可以换 $N-1$ 次牌。
第四行 $N$ 个用单个空格隔开的整数 $c_1,,\cdots,c_N$ ,依次表示小杨从第 $1$ 轮至第 $N$ 轮出的牌。保证 $c_i\in{0,1,2}$ 。
Output
一行一个整数,表示你最多获得的分数。
Constraints
对于 $30\%$ 的测试点,保证 $N<=15$。
对于 $60\%$ 的测试点,保证 $N<=100$。
对于所有测试点,保证 $N \le 1,000$;保证 $0 \le a_i,b_i \le 10^6$。
对于 $60\%$ 的测试点,保证 $N<=100$。
对于所有测试点,保证 $N \le 1,000$;保证 $0 \le a_i,b_i \le 10^6$。
Sample 1 Input
4
1 2 10 100
1 100 1
1 1 2 0
Sample 1 Output
219
你可以第 $1$ 轮出 $0$,并在第 $2,3$ 轮保持不变,如此输掉第 $1,2$ 轮,但在第 $3$ 轮中取胜,获得 $2×10=20$ 分;
随后,你可以在第 $4$ 轮中以扣 $1$ 分为代价改出 $1$ ,并在第 $4$ 轮中取得胜利,获得 $2×100=200$ 分。
如此,你可以获得最高的总分 $20+200-1=219$。
随后,你可以在第 $4$ 轮中以扣 $1$ 分为代价改出 $1$ ,并在第 $4$ 轮中取得胜利,获得 $2×100=200$ 分。
如此,你可以获得最高的总分 $20+200-1=219$。
Sample 2 Input
6
3 7 2 8 9 4
1 3 9 27 81
0 1 2 1 2 0
Sample 2 Output
56