Problem10597--ABC357 —— G - Stair-like Grid

10597: ABC357 —— G - Stair-like Grid

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There is a special grid with $N$ rows. ($N$ is even.) The $i$-th row from the top has $\left \lceil \frac{i}{2} \right \rceil \times 2$ cells from the left end.  
For example, when $N = 6$, the grid looks like the following:

Let $(i, j)$ denote the cell at the $i$\-th row from the top and $j$-th column from the left.  
Each cell is either an empty cell or a wall cell. There are $M$ wall cells, and the $i$-th wall cell is $(a_i, b_i)$. Here, $(1, 1)$ and $(N, N)$ are empty.  
Starting from $(1, 1)$, how many ways are there to reach $(N, N)$ by repeatedly moving right or down to an adjacent empty cell? Find the count modulo $998244353$.

Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$a_1$ $b_1$
$a_2$ $b_2$
$\vdots$
$a_M$ $b_M$
```

Output

Print the number of ways to reach $(N, N)$ from $(1, 1)$ by repeatedly moving right or down to an adjacent empty cell, modulo $998244353$.

Constraints

-   $2 \leq N \leq 2.5 \times 10^5$
-   $N$ is even.
-   $0 \leq M \leq 50$
-   $1 \leq a_i \leq N$
-   $1 \leq b_i \leq \left \lceil \frac{a_i}{2} \right \rceil \times 2$
-   $(a_i, b_i) \neq (1, 1)$ and $(a_i, b_i) \neq (N, N)$.
-   $(a_i, b_i) \neq (a_j, b_j)$ if $i \neq j$.
-   All input values are integers.

Sample 1 Input

4 2
2 1
4 2

Sample 1 Output

2
There are two paths that satisfy the conditions of the problem:
  • $(1, 1) \to (1, 2) \to (2, 2) \to (3, 2) \to (3, 3) \to (3, 4) \to (4, 4)$
  • $(1, 1) \to (1, 2) \to (2, 2) \to (3, 2) \to (3, 3) \to (4, 3) \to (4, 4)$

Sample 2 Input

6 3
2 1
3 3
4 2

Sample 2 Output

0

Sample 3 Input

100 10
36 9
38 5
38 30
45 1
48 40
71 52
85 27
86 52
92 34
98 37

Sample 3 Output

619611437

100000 10
552 24
4817 255
7800 954
23347 9307
28028 17652
39207 11859
48670 22013
74678 53158
75345 45891
88455 4693

175892766

Source/Category