10557: NOIP2023 T3:双序列拓展(expand)
[Creator : ]
Description
称某个序列 $B = \{b_1,b_2,\cdots,b_n\}$ 是另一个序列 $A = \{a_1,a_2,\cdots,a_m\}$ 的**拓展**当且仅当存在**正整数**序列 $L = \{l_1,l_2,\cdots,l_m\}$,将 $a_i$ 替换为 $l_i$ 个 $a_i$ 后得到序列 $B$。例如,
- $\{1,3,3,3,2,2,2\}$ 是 $\{1,3,3,2\}$ 的拓展,取 $L = \{1,1,2,3\}$ 或 $\{1,2,1,3\}$;
- 而 $\{1,3,3,2\}$ 不是 $\{1,3,3,3,2\}$ 的拓展,$\{1,2,3\}$ 不是 $\{1,3,2\}$ 的拓展。
小 R 给了你两个序列 $X$ 和 $Y$,他希望你找到 $X$ 的一个长度为 $l_0 = 10^{100}$ 的拓展 $F = \{f_i\}$ 以及 $Y$ 的一个长度为 $l_0$ 的拓展 $G = \{g_i\}$,使得任意 $1 \le i , j \le l_0$ 都有 $(f_i - g_i)(f_j - g_j) > 0$。由于序列太长,你只需要告诉小 R 是否存在这样的两个序列即可。
为了避免你扔硬币蒙混过关,小 R 还给了 $q$ 次额外询问,每次额外询问中小 R 会修改 $X$ 和 $Y$ 中若干元素的值。你需要对每次得到的新的 $X$ 和 $Y$ 都进行上述的判断。
询问之间是独立的,每次询问中涉及的修改均在原始序列上完成。
- $\{1,3,3,3,2,2,2\}$ 是 $\{1,3,3,2\}$ 的拓展,取 $L = \{1,1,2,3\}$ 或 $\{1,2,1,3\}$;
- 而 $\{1,3,3,2\}$ 不是 $\{1,3,3,3,2\}$ 的拓展,$\{1,2,3\}$ 不是 $\{1,3,2\}$ 的拓展。
小 R 给了你两个序列 $X$ 和 $Y$,他希望你找到 $X$ 的一个长度为 $l_0 = 10^{100}$ 的拓展 $F = \{f_i\}$ 以及 $Y$ 的一个长度为 $l_0$ 的拓展 $G = \{g_i\}$,使得任意 $1 \le i , j \le l_0$ 都有 $(f_i - g_i)(f_j - g_j) > 0$。由于序列太长,你只需要告诉小 R 是否存在这样的两个序列即可。
为了避免你扔硬币蒙混过关,小 R 还给了 $q$ 次额外询问,每次额外询问中小 R 会修改 $X$ 和 $Y$ 中若干元素的值。你需要对每次得到的新的 $X$ 和 $Y$ 都进行上述的判断。
询问之间是独立的,每次询问中涉及的修改均在原始序列上完成。
Input
输入的第一行包含四个整数 $c, n, m, q$,分别表示测试点编号、序列 $X$ 的长度、序列 $Y$ 的长度和额外询问的个数。对于样例,$c$ 表示该样例与测试点 $c$ 拥有相同的限制条件。
输入的第二行包含 $n$ 个整数 $x_1,x_2,\cdots, x_n$,描述序列 $X$。
输入的第三行包含 $m$ 个整数 $y_1,y_2,\cdots, y_m$,描述序列 $Y$。
接下来依次描述 $q$ 组额外询问。对于每组额外询问:
- 输入的第一行包含两个整数 $k_x$ 和 $k_y$,分别表示对序列 $X$ 和 $Y$ 产生的修改个数。
- 接下来 $k_x$ 行每行包含两个整数 $p_x, v_x$,表示将 $x_{p_x}$ 修改为 $v_x$。
- 接下来 $k_y$ 行每行包含两个整数 $p_y, v_y$,表示将 $y_{p_y}$ 修改为 $v_y$。
输入的第二行包含 $n$ 个整数 $x_1,x_2,\cdots, x_n$,描述序列 $X$。
输入的第三行包含 $m$ 个整数 $y_1,y_2,\cdots, y_m$,描述序列 $Y$。
接下来依次描述 $q$ 组额外询问。对于每组额外询问:
- 输入的第一行包含两个整数 $k_x$ 和 $k_y$,分别表示对序列 $X$ 和 $Y$ 产生的修改个数。
- 接下来 $k_x$ 行每行包含两个整数 $p_x, v_x$,表示将 $x_{p_x}$ 修改为 $v_x$。
- 接下来 $k_y$ 行每行包含两个整数 $p_y, v_y$,表示将 $y_{p_y}$ 修改为 $v_y$。
Output
输出一行,其中包含一个长度为 $(q+1)$ 的 `01` 序列,序列的第一个元素表示初始询问的答案,之后 $q$ 个元素依次表示每组额外询问的答案。对于每个询问,如果存在满足题目条件的序列 $F$ 和 $G$,输出 `1`,否则输出 `0`。
Constraints
对于所有测试数据,保证:
- $1 \le n, m \le 5 \times 10 ^ 5$;
- $0 \le q \le 60$;
- $0 \le x_i, y_i < 10 ^ 9$;
- $0 \le k_x, k_y \le 5 \times 10 ^ 5$,且所有额外询问的 $(k_x+k_y)$ 的和不超过 $5 \times 10 ^ 5$;
- $1 \le p_x \le n$,$1 \le p_y \le m$,$0 \le v_x, v_y < 10 ^ 9$;
- 对于每组额外询问,$p_x$ 两两不同,$p_y$ 两两不同。
特殊性质:对于每组询问(包括初始询问和额外询问),保证 $x_1 < y_1$,且 $x_n$ 是序列 $X$ 唯一的一个最小值,$y_m$ 是序列 $Y$ 唯一的一个最大值。
- $1 \le n, m \le 5 \times 10 ^ 5$;
- $0 \le q \le 60$;
- $0 \le x_i, y_i < 10 ^ 9$;
- $0 \le k_x, k_y \le 5 \times 10 ^ 5$,且所有额外询问的 $(k_x+k_y)$ 的和不超过 $5 \times 10 ^ 5$;
- $1 \le p_x \le n$,$1 \le p_y \le m$,$0 \le v_x, v_y < 10 ^ 9$;
- 对于每组额外询问,$p_x$ 两两不同,$p_y$ 两两不同。
特殊性质:对于每组询问(包括初始询问和额外询问),保证 $x_1 < y_1$,且 $x_n$ 是序列 $X$ 唯一的一个最小值,$y_m$ 是序列 $Y$ 唯一的一个最大值。
Sample 1 Input
3 3 3 3
8 6 9
1 7 4
1 0
3 0
0 2
1 8
3 5
1 1
2 8
1 7
Sample 1 Output
1001
由于 $F$ 和 $G$ 太长,用省略号表示重复最后一个元素直到序列长度为 $l_0$。如 $\{1,2,3,3,\cdots\}$ 表示序列从第三个元素之后都是 $3$。
以下依次描述四次询问,其中第一次询问为初始询问,之后的三次为额外询问:
1. $A = \{8,6,9\}$,$B = \{1,7,4\}$,取 $F = \{8,8,6,9,\cdots\}, G = \{1,7,4,4,\cdots\}$;
2. $A = \{8,6,0\}$,$B = \{1,7,4\}$,可以证明不存在满足要求的方案;
3. $A = \{8,6,9\}$,$B = \{8,7,5\}$,可以证明不存在满足要求的方案;
4. $A = \{8,8,9\}$,$B = \{7,7,4\}$,取 $F = \{8,8,9,\cdots\}, G = \{7,7,4,\cdots\}$。
以下依次描述四次询问,其中第一次询问为初始询问,之后的三次为额外询问:
1. $A = \{8,6,9\}$,$B = \{1,7,4\}$,取 $F = \{8,8,6,9,\cdots\}, G = \{1,7,4,4,\cdots\}$;
2. $A = \{8,6,0\}$,$B = \{1,7,4\}$,可以证明不存在满足要求的方案;
3. $A = \{8,6,9\}$,$B = \{8,7,5\}$,可以证明不存在满足要求的方案;
4. $A = \{8,8,9\}$,$B = \{7,7,4\}$,取 $F = \{8,8,9,\cdots\}, G = \{7,7,4,\cdots\}$。