Problem10538--ABC117 —— D - XXOR

10538: ABC117 —— D - XXOR

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given $N$ non-negative integers $A_1, A_2, ..., A_N$ and another non-negative integer $K$.

For a integer $X$ between $0$ and $K$ (inclusive), let $f(X) = (X$ XOR $A_1)$ $+$ $(X$ XOR $A_2)$ $+$ $...$ $+$ $(X$ XOR $A_N)$.

Here, for non-negative integers $a$ and $b$, $a$ XOR $b$ denotes the bitwise exclusive OR of $a$ and $b$.

Find the maximum value of $f$.

What is XOR?

The bitwise exclusive OR of $a$ and $b$, $X$, is defined as follows:

-   When $X$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if, when written in base two, exactly one of $A$ and $B$ has $1$ in the $2^k$'s place, and $0$ otherwise.

For example, $3$ XOR $5 = 6$. (When written in base two: $011$ XOR $101 = 110$.)

Input

Input is given from Standard Input in the following format:

```
$N$ $K$
$A_1$ $A_2$ $...$ $A_N$
```

Output

Print the maximum value of $f$.

Constraints

-   All values in input are integers.
-   $1 \leq N \leq 10^5$
-   $0 \leq K \leq 10^{12}$
-   $0 \leq A_i \leq 10^{12}$

Sample 1 Input

3 7
1 6 3

Sample 1 Output

14
The maximum value is: f(4)=(4 XOR 1)+(4 XOR 6)+(4 XOR 3)=5+2+7=14.

Sample 2 Input

4 9
7 4 0 3

Sample 2 Output

46

Sample 3 Input

1 0
1000000000000

Sample 3 Output

1000000000000

Source/Category