Problem10532--ABC116 —— B - Collatz Problem

10532: ABC116 —— B - Collatz Problem

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

A sequence $a=\{a_1,a_2,a_3,......\}$ is determined as follows:

-   The first term $s$ is given as input.
    
-   Let $f(n)$ be the following function: $f(n) = n/2$ if $n$ is even, and $f(n) = 3n+1$ if $n$ is odd.
    
-   $a_i = s$ when $i = 1$, and $a_i = f(a_{i-1})$ when $i > 1$.
    
Find the minimum integer $m$ that satisfies the following condition:

-   There exists an integer $n$ such that $a_m = a_n (m > n)$.

Input

Input is given from Standard Input in the following format:

```
$s$
```

Output

Print the minimum integer $m$ that satisfies the condition.

Constraints

-   $1 \leq s \leq 100$
-   All values in input are integers.
-   It is guaranteed that all elements in $a$ and the minimum $m$ that satisfies the condition are at most $1000000$.

Sample 1 Input

8

Sample 1 Output

5
a={8,4,2,1,4,2,1,4,2,1,......}. As $a_5=a_2$, the answer is 5.

Sample 2 Input

7

Sample 2 Output

18
a={7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1,......}.

Sample 3 Input

54

Sample 3 Output

114

Source/Category