Problem10510--ABC110 —— D - Factorization

10510: ABC110 —— D - Factorization

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given positive integers $N$ and $M$.

How many sequences $a$ of length $N$ consisting of positive integers satisfy $a_1 \times a_2 \times ... \times a_N = M$? Find the count modulo $10^9+7$.

Here, two sequences $a'$ and $a''$ are considered different when there exists some $i$ such that $a_i' \neq a_i''$.

Input

Input is given from Standard Input in the following format:

```
$N$ $M$
```

Output

Print the number of the sequences consisting of positive integers that satisfy the condition, modulo $10^9 + 7$.

Constraints

-   All values in input are integers.
-   $1 \leq N \leq 10^5$
-   $1 \leq M \leq 10^9$

Sample 1 Input

2 6

Sample 1 Output

4
Four sequences satisfy the condition: {$a_1,a_2$}={1,6},{2,3},{3,2} and {6,1}{6,1}.

Sample 2 Input

3 12

Sample 2 Output

18

Sample 3 Input

100000 1000000000

Sample 3 Output

957870001

Source/Category