Problem10500--ABC108 —— C - Triangular Relationship

10500: ABC108 —— C - Triangular Relationship

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given integers $N$ and $K$. Find the number of triples $(a,b,c)$ of positive integers not greater than $N$ such that $a+b,b+c$ and $c+a$ are all multiples of $K$. The order of $a,b,c$ does matter, and some of them can be the same.

Input

Input is given from Standard Input in the following format:

```
$N$ $K$
```

Output

Print the number of triples $(a,b,c)$ of positive integers not greater than $N$ such that $a+b,b+c$ and $c+a$ are all multiples of $K$.

Constraints

-   $1 \leq N,K \leq 2\times 10^5$
-   $N$ and $K$ are integers.

Sample 1 Input

3 2

Sample 1 Output

9
(1,1,1),(1,1,3),(1,3,1),(1,3,3),(2,2,2),(3,1,1),(3,1,3),(3,3,1) and (3,3,3) satisfy the condition.

Sample 2 Input

5 3

Sample 2 Output

1

Sample 3 Input

31415 9265

Sample 3 Output

27

35897 932

114191

Source/Category