Problem10499--ABC108 —— B - Ruined Square

10499: ABC108 —— B - Ruined Square

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There is a square in the $xy$-plane. The coordinates of its four vertices are $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ and $(x_4,y_4)$ in counter-clockwise order. (Assume that the positive $x$-axis points right, and the positive $y$-axis points up.)

Takahashi remembers $(x_1,y_1)$ and $(x_2,y_2)$, but he has forgot $(x_3,y_3)$ and $(x_4,y_4)$.

Given $x_1,x_2,y_1,y_2$, restore $x_3,y_3,x_4,y_4$. It can be shown that $x_3,y_3,x_4$ and $y_4$ uniquely exist and have integer values.

Input

Input is given from Standard Input in the following format:

```
$x_1$ $y_1$ $x_2$ $y_2$
```

Output

Print $x_3,y_3,x_4$ and $y_4$ as integers, in this order.

Constraints

-   $|x_1|,|y_1|,|x_2|,|y_2| \leq 100$
-   $(x_1,y_1)$ ≠ $(x_2,y_2)$
-   All values in input are integers.

Sample 1 Input

0 0 0 1

Sample 1 Output

-1 1 -1 0
(0,0),(0,1),(−1,1),(−1,0) is the four vertices of a square in counter-clockwise order. Note that (x3,y3)=(1,1),(x4,y4)=(1,0) is not accepted, as the vertices are in clockwise order.

Sample 2 Input

2 3 6 6

Sample 2 Output

3 10 -1 7

Sample 3 Input

31 -41 -59 26

Sample 3 Output

-126 -64 -36 -131

Source/Category