10499: ABC108 —— B - Ruined Square
[Creator : ]
Description
There is a square in the $xy$-plane. The coordinates of its four vertices are $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ and $(x_4,y_4)$ in counter-clockwise order. (Assume that the positive $x$-axis points right, and the positive $y$-axis points up.)
Takahashi remembers $(x_1,y_1)$ and $(x_2,y_2)$, but he has forgot $(x_3,y_3)$ and $(x_4,y_4)$.
Given $x_1,x_2,y_1,y_2$, restore $x_3,y_3,x_4,y_4$. It can be shown that $x_3,y_3,x_4$ and $y_4$ uniquely exist and have integer values.
Takahashi remembers $(x_1,y_1)$ and $(x_2,y_2)$, but he has forgot $(x_3,y_3)$ and $(x_4,y_4)$.
Given $x_1,x_2,y_1,y_2$, restore $x_3,y_3,x_4,y_4$. It can be shown that $x_3,y_3,x_4$ and $y_4$ uniquely exist and have integer values.
Input
Input is given from Standard Input in the following format:
```
$x_1$ $y_1$ $x_2$ $y_2$
```
```
$x_1$ $y_1$ $x_2$ $y_2$
```
Output
Print $x_3,y_3,x_4$ and $y_4$ as integers, in this order.
Constraints
- $|x_1|,|y_1|,|x_2|,|y_2| \leq 100$
- $(x_1,y_1)$ ≠ $(x_2,y_2)$
- All values in input are integers.
- $(x_1,y_1)$ ≠ $(x_2,y_2)$
- All values in input are integers.
Sample 1 Input
0 0 0 1
Sample 1 Output
-1 1 -1 0
(0,0),(0,1),(−1,1),(−1,0) is the four vertices of a square in counter-clockwise order. Note that (x3,y3)=(1,1),(x4,y4)=(1,0) is not accepted, as the vertices are in clockwise order.
Sample 2 Input
2 3 6 6
Sample 2 Output
3 10 -1 7
Sample 3 Input
31 -41 -59 26
Sample 3 Output
-126 -64 -36 -131