10480: ABC103 —— C - Modulo Summation
[Creator : ]
Description
You are given $N$ positive integers $a_1, a_2, ..., a_N$.
For a non-negative integer $m$, let $f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N)$.
Here, $X\ mod\ Y$ denotes the remainder of the division of $X$ by $Y$.
Find the maximum value of $f$.
For a non-negative integer $m$, let $f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N)$.
Here, $X\ mod\ Y$ denotes the remainder of the division of $X$ by $Y$.
Find the maximum value of $f$.
Input
Input is given from Standard Input in the following format:
```
$N$
$a_1$ $a_2$ $...$ $a_N$
```
```
$N$
$a_1$ $a_2$ $...$ $a_N$
```
Output
Print the maximum value of $f$.
Constraints
- All values in input are integers.
- $2 \leq N \leq 3000$
- $2 \leq a_i \leq 10^5$
- $2 \leq N \leq 3000$
- $2 \leq a_i \leq 10^5$
Sample 1 Input
3
3 4 6
Sample 1 Output
10
f(11)=(11 mod 3)+(11 mod 4)+(11 mod 6)=10 is the maximum value of f.
Sample 2 Input
5
7 46 11 20 11
Sample 2 Output
90
Sample 3 Input
7
994 518 941 851 647 2 581
Sample 3 Output
4527