Problem10480--ABC103 —— C - Modulo Summation

10480: ABC103 —— C - Modulo Summation

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given $N$ positive integers $a_1, a_2, ..., a_N$.

For a non-negative integer $m$, let $f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N)$.

Here, $X\ mod\ Y$ denotes the remainder of the division of $X$ by $Y$.

Find the maximum value of $f$.

Input

Input is given from Standard Input in the following format:

```
$N$
$a_1$ $a_2$ $...$ $a_N$
```

Output

Print the maximum value of $f$.

Constraints

-   All values in input are integers.
-   $2 \leq N \leq 3000$
-   $2 \leq a_i \leq 10^5$

Sample 1 Input

3
3 4 6

Sample 1 Output

10
f(11)=(11 mod 3)+(11 mod 4)+(11 mod 6)=10 is the maximum value of f.

Sample 2 Input

5
7 46 11 20 11

Sample 2 Output

90

Sample 3 Input

7
994 518 941 851 647 2 581

Sample 3 Output

4527

Source/Category