Problem10477--ABC102 —— D - Equal Cut

10477: ABC102 —— D - Equal Cut

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Snuke has an integer sequence $A$ of length $N$.

He will make three cuts in $A$ and divide it into four (non-empty) contiguous subsequences $B, C, D$ and $E$. The positions of the cuts can be freely chosen.

Let $P,Q,R,S$ be the sums of the elements in $B,C,D,E$, respectively. Snuke is happier when the absolute difference of the maximum and the minimum among $P,Q,R,S$ is smaller. Find the minimum possible absolute difference of the maximum and the minimum among $P,Q,R,S$.

Input

Input is given from Standard Input in the following format:

```
$N$
$A_1$ $A_2$ $...$ $A_N$
```

Output

Find the minimum possible absolute difference of the maximum and the minimum among $P,Q,R,S$.

Constraints

-   $4 \leq N \leq 2 \times 10^5$
-   $1 \leq A_i \leq 10^9$
-   All values in input are integers.

Sample 1 Input

5
3 2 4 1 2

Sample 1 Output

2
If we divide A as B,C,D,E=(3),(2),(4),(1,2), then P=3,Q=2,R=4,S=1+2=3. Here, the maximum and the minimum among P,Q,R,S are 4 and 2, with the absolute difference of 2. We cannot make the absolute difference of the maximum and the minimum less than 2, so the answer is 2.

Sample 2 Input

10
10 71 84 33 6 47 23 25 52 64

Sample 2 Output

36

Sample 3 Input

7
1 2 3 1000000000 4 5 6

Sample 3 Output

999999994

Source/Category