Problem10472--ABC101 —— D - Snuke Numbers

10472: ABC101 —— D - Snuke Numbers

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Let $S(n)$ denote the sum of the digits in the decimal notation of $n$. For example, $S(123) = 1 + 2 + 3 = 6$.

We will call an integer $n$ a Snuke number when, for all positive integers $m$ such that $m > n$, $\frac{n}{S(n)} \leq \frac{m}{S(m)}$ holds.

Given an integer $K$, list the $K$ smallest Snuke numbers.

Input

Input is given from Standard Input in the following format:

```
$K$
```

Output

Print $K$ lines. The $i$-th line should contain the $i$-th smallest Snuke number.

Constraints

-   $1 \leq K$
-   The $K$\-th smallest Snuke number is not greater than $10^{15}$.

Sample 1 Input

10

Sample 1 Output

1
2
3
4
5
6
7
8
9
19

Source/Category