10444: USACO 2024 February Contest, Gold Problem 2. Milk Exchange
[Creator : ]
Description
Farmer John's $N$ $(1 \leq N \leq 5 \cdot 10^5)$ cows are lined up in a circle.
The $i$th cow has a bucket with integer capacity $a_i$ $(1 \leq a_i \leq 10^9)$
liters. All buckets are initially full.
Every minute, cow $i$ will pass all the milk in their bucket to cow $i+1$ for $1\le i<N$, with cow $N$ passing its milk to cow $1$. All exchanges happen simultaneously (i.e., if a cow has a full bucket but gives away $x$ liters of milk and also receives $x$ liters, her milk is preserved). If a cow's total milk ever ends up exceeding $a_i$, then the excess milk will be lost.
After each of $1, 2, \dots, N$ minutes, how much total milk is left among all cows?
Input
The first line contains $N$.
The next line contains integers $a_1,a_2,...,a_N$.
Output
Output $N$ lines, where the $i$-th line is the total milk left among all cows
after $i$ minutes.
Constraints
- Inputs 4-5: $N \le 2000$
- Inputs 6-8: $a_i \le 2$
- Inputs 9-13: All $a_i$ are generated uniformly at random in the range $[1,10^9]$.
- Inputs 14-23: No additional constraints.
Sample 1 Input
6
2 2 2 1 2 1
Sample 1 Output
8
7
6
6
6
6
Initially, the amount of milk in each bucket is $[2, 2, 2, 1, 2, 1]$.
- After $1$ minute, the amount of milk in each bucket is $[1, 2, 2, 1, 1, 1]$ so the total amount of milk is $8$.
- After $2$ minutes, the amount of milk in each bucket is $[1, 1, 2, 1, 1, 1]$ so the total amount of milk is $7$.
- After $3$ minutes, the amount of milk in each bucket is $[1, 1, 1, 1, 1, 1]$ so the total amount of milk is $6$.
- After $4$ minutes, the amount of milk in each bucket is $[1, 1, 1, 1, 1, 1]$ so the total amount of milk is $6$.
- After $5$ minutes, the amount of milk in each bucket is $[1, 1, 1, 1, 1, 1]$ so the total amount of milk is $6$.
- After $6$ minutes, the amount of milk in each bucket is $[1, 1, 1, 1, 1, 1]$ so the total amount of milk is $6$.
Sample 2 Input
8
3 8 6 4 8 3 8 1
Sample 2 Output
25
20
17
14
12
10
8
8
After $1$ minute, the amount of milk in each bucket is
$[1, 3, 6, 4, 4, 3, 3, 1]$ so the total amount of milk is $25$.
Sample 3 Input
10
9 9 10 10 6 8 2 1000000000 1000000000 1000000000
Sample 3 Output
2000000053
1000000054
56
49
42
35
28
24
20
20