Problem10374--ARC085 —— F - NRE

10374: ARC085 —— F - NRE

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a sequence $a = \{a_1, ..., a_N\}$ with all zeros, and a sequence $b = \{b_1, ..., b_N\}$ consisting of $0$ and $1$. The length of both is $N$.

You can perform $Q$ kinds of operations. The $i$\-th operation is as follows:

-   Replace each of $a_{l_i}, a_{l_i + 1}, ..., a_{r_i}$ with $1$.

Minimize the hamming distance between $a$ and $b$, that is, the number of $i$ such that $a_i \neq b_i$, by performing some of the $Q$ operations.

Input

Input is given from Standard Input in the following format:

```
$N$
$b_1$ $b_2$ $...$ $b_N$
$Q$
$l_1$ $r_1$
$l_2$ $r_2$
$:$
$l_Q$ $r_Q$
```

Output

Print the minimum possible hamming distance.

Constraints

-   $1 \leq N \leq 200,000$
-   $b$ consists of $0$ and $1$.
-   $1 \leq Q \leq 200,000$
-   $1 \leq l_i \leq r_i \leq N$
-   If $i \neq j$, either $l_i \neq l_j$ or $r_i \neq r_j$.

Sample 1 Input

3
1 0 1
1
1 3

Sample 1 Output

1

Sample 2 Input

3
1 0 1
2
1 1
3 3

Sample 2 Output

0

Sample 3 Input

3
1 0 1
2
1 1
2 3

Sample 3 Output

1

5
0 1 0 1 0
1
1 5

2

Sample 4 Input

9
0 1 0 1 1 1 0 1 0
3
1 4
5 8
6 7

Sample 4 Output

3

Source/Category