Problem10336--ABC355 —— G - Baseball

10336: ABC355 —— G - Baseball

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a sequence $P=(P_1,P_2,\dots,P_N)$ of length $N$. Takahashi and Aoki will play a game using the sequence $P$.

First, Takahashi will choose $K$ distinct integers $x_1,x_2,\dots,x_K$ from $1,2,\dots,N$.

Next, Aoki will choose an integer $y$ from $1,2,\dots,N$ with a probability proportional to $P_y$. That is, the probability that integer $y$ is chosen is $\dfrac{P_y}{\sum_{y'=1}^N P_{y'}}$. Then, Aoki's score will be $\displaystyle \min_{i=1,2,\dots,K} |x_i-y|$.

Takahashi wants to **minimize** the expected value of Aoki's score. Find the expected value of Aoki's score when Takahashi chooses $x_1,x_2,\dots,x_K$ so that this value is minimized, multiplied by $\sum_{y'=1}^N P_{y'}$. It is guaranteed that the value to be printed is an integer.

Input

The input is given from Standard Input in the following format:

```
$N$ $K$
$P_1$ $P_2$ $\dots$ $P_N$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 5 \times 10^4$
-   $1 \leq K \leq N$
-   $0 \leq P_i \leq 10^5$
-   $1 \leq \sum_{y'=1}^N P_{y'} \leq 10^5$
-   All input values are integers.

Sample 1 Input

5 2
1 1 1 1 1

Sample 1 Output

3

The probabilities of Aoki choosing $1,2,…,N$ are all equal: $\frac{1}{5}$.

If Takahashi chooses $x_1=2$ and $x_2=4$, then the expected value of Aoki's score will be $1×\frac{1}{5}+0×\frac{1}{5}+1×\frac{1}{5}+0×\frac{1}{5}+1×\frac{1}{5}=\frac{3}{5}$.

If Takahashi chooses $x_1=2$ and $x_2=3$, then the expected value of Aoki's score will be $1×\frac{1}{5}+0×\frac{1}{5}+0×\frac{1}{5}+1×\frac{1}{5}+2×\frac{1}{5}=\frac{4}{5}$.

No matter how Takahashi chooses, the expected value of Aoki's score cannot be smaller than $\frac{3}{5}$. Therefore, the minimum value is $\frac{3}{5}$, so print this value multiplied by 5, which is 3.

Sample 2 Input

5 1
0 0 1 0 0

Sample 2 Output

0

Sample 3 Input

1 1
100

Sample 3 Output

0

20 7
4262 9522 2426 3823 7364 964 2743 2423 1955 5274 3684 847 363 35 278 3220 203 2904 6304 1928

22809

Source/Category