Problem10139--ABC353 —— D - Another Sigma Problem

10139: ABC353 —— D - Another Sigma Problem

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

For positive integers $x$ and $y$, define $f(x, y)$ as follows:

-   Interpret the decimal representations of $x$ and $y$ as strings and concatenate them in this order to obtain a string $z$. The value of $f(x, y)$ is the value of $z$ when interpreted as a decimal integer.

For example, $f(3, 14) = 314$ and $f(100, 1) = 1001$.

You are given a sequence of positive integers $A = (A_1, \ldots, A_N)$ of length $N$. Find the value of the following expression modulo $998244353$:

$\displaystyle \sum_{i=1}^{N-1}\sum_{j=i+1}^N f(A_i,A_j)$.

Input

The input is given from Standard Input in the following format:

```
$N$
$A_1$ $\ldots$ $A_N$
```

Output

Print the answer.

Constraints

-   $2 \leq N \leq 2 \times 10^5$
-   $1 \leq A_i \leq 10^9$
-   All input values are integers.

Sample 1 Input

3
3 14 15

Sample 1 Output

2044
  • $f(A_1,A_2)=314$
  • $f(A_1,A_3)=315$
  • $f(A_2,A_3)=1415$

Thus, the answer is $f(A_1,A_2)+f(A_1,A_3)+f(A_2,A_3)=2044$.

Sample 2 Input

5
1001 5 1000000 1000000000 100000

Sample 2 Output

625549048

Source/Category