10119: ABC351 —— B - Spot the Difference
[Creator : ]
Description
You are given two grids, each with $N$ rows and $N$ columns, referred to as grid $A$ and grid $B$.
Each cell in the grids contains a lowercase English letter.
The character at the $i$-th row and $j$-th column of grid $A$ is $A_{i, j}$.
The character at the $i$-th row and $j$-th column of grid $B$ is $B_{i, j}$.
The two grids differ in exactly one cell. That is, there exists exactly one pair $(i, j)$ of positive integers not greater than $N$ such that $A_{i, j} \neq B_{i, j}$. Find this $(i, j)$.
Each cell in the grids contains a lowercase English letter.
The character at the $i$-th row and $j$-th column of grid $A$ is $A_{i, j}$.
The character at the $i$-th row and $j$-th column of grid $B$ is $B_{i, j}$.
The two grids differ in exactly one cell. That is, there exists exactly one pair $(i, j)$ of positive integers not greater than $N$ such that $A_{i, j} \neq B_{i, j}$. Find this $(i, j)$.
Input
The input is given from Standard Input in the following format:
```
$N$
$A_{1,1}A_{1,2}\dots A_{1,N}$
$A_{2,1}A_{2,2}\dots A_{2,N}$
$\vdots$
$A_{N,1}A_{N,2}\dots A_{N,N}$
$B_{1,1}B_{1,2}\dots B_{1,N}$
$B_{2,1}B_{2,2}\dots B_{2,N}$
$\vdots$
$B_{N,1}B_{N,2}\dots B_{N,N}$
```
```
$N$
$A_{1,1}A_{1,2}\dots A_{1,N}$
$A_{2,1}A_{2,2}\dots A_{2,N}$
$\vdots$
$A_{N,1}A_{N,2}\dots A_{N,N}$
$B_{1,1}B_{1,2}\dots B_{1,N}$
$B_{2,1}B_{2,2}\dots B_{2,N}$
$\vdots$
$B_{N,1}B_{N,2}\dots B_{N,N}$
```
Output
Let $(i, j)$ be the pair of positive integers not greater than $N$ such that $A_{i, j} \neq B_{i, j}$. Print $(i, j)$ in the following format:
```
$i$ $j$
```
```
$i$ $j$
```
Constraints
- $1 \leq N \leq 100$
- $A_{i, j}$ and $B_{i, j}$ are all lowercase English letters.
- There exists exactly one pair $(i, j)$ such that $A_{i, j} \neq B_{i, j}$.
- $A_{i, j}$ and $B_{i, j}$ are all lowercase English letters.
- There exists exactly one pair $(i, j)$ such that $A_{i, j} \neq B_{i, j}$.
Sample 1 Input
3
abc
def
ghi
abc
bef
ghi
Sample 1 Output
2 1
From $A_{2,1}$= d and $B_{2,1}$= b, we have $A_{2,1}\neq B_{2,1}$, so (i,j)=(2,1) satisfies the condition in the problem statement.
Sample 2 Input
1
f
q
Sample 2 Output
1 1
Sample 3 Input
10
eixfumagit
vtophbepfe
pxbfgsqcug
ugpugtsxzq
bvfhxyehfk
uqyfwtmglr
jaitenfqiq
acwvufpfvv
jhaddglpva
aacxsyqvoj
eixfumagit
vtophbepfe
pxbfgsqcug
ugpugtsxzq
bvfhxyehok
uqyfwtmglr
jaitenfqiq
acwvufpfvv
jhaddglpva
aacxsyqvoj
Sample 3 Output
5 9