10103: ABC348 —— G - Max (Sum - Max)
[Creator : ]
Description
You are given two integer sequences $A$ and $B$ of length $N$. For $k = 1, 2, \ldots, N$, solve the following problem:
- Consider choosing $k$ distinct integers between $1$ and $N$, inclusive. Let $S$ be the set of chosen integers. Find the maximum value of $\displaystyle (\sum_{i \in S} A_i) - \max_{i \in S} B_i$.
- Consider choosing $k$ distinct integers between $1$ and $N$, inclusive. Let $S$ be the set of chosen integers. Find the maximum value of $\displaystyle (\sum_{i \in S} A_i) - \max_{i \in S} B_i$.
Input
The input is given from Standard Input in the following format:
```
$N$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
```
```
$N$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
```
Output
Print $N$ lines. The $i$-th line should contain the answer to the problem for $k=i$.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $-10^9 \leq A_i \leq 10^9$
- $-2 \times 10^{14} \leq B_i \leq 2 \times 10^{14}$
- $-10^9 \leq A_i \leq 10^9$
- $-2 \times 10^{14} \leq B_i \leq 2 \times 10^{14}$
Sample 1 Input
3
4 1
5 6
3 2
Sample 1 Output
3
5
6
The following choices are optimal.
- k=1: S={1}
- k=2: S={1,3}
- k=3: S={1,2,3}
Sample 2 Input
2
0 1
0 1
Sample 2 Output
-1
-1
Sample 3 Input
6
9 7
2 4
7 1
-1000 0
3 4
8 5
Sample 3 Output
6
10
17
20
22
-978