Problem10102--ABC348 —— F - Oddly Similar

10102: ABC348 —— F - Oddly Similar

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There are $N$ sequences of length $M$, denoted as $A_1, A_2, \ldots, A_N$. The $i$-th sequence is represented by $M$ integers $A_{i,1}, A_{i,2}, \ldots, A_{i,M}$.

Two sequences $X$ and $Y$ of length $M$ are said to be similar if and only if the number of indices $i (1 \leq i \leq M)$ such that $X_i = Y_i$ is odd.

Find the number of pairs of integers $(i,j)$ satisfying $1 \leq i < j \leq N$ such that $A_i$ and $A_j$ are similar.

Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$A_{1,1}$ $A_{1,2}$ $\ldots$ $A_{1,M}$
$A_{2,1}$ $A_{2,2}$ $\ldots$ $A_{2,M}$
$\vdots$
$A_{N,1}$ $A_{N,2}$ $\ldots$ $A_{N,M}$
```

Output

Print the answer as an integer.

Constraints

-   $1 \leq N \leq 2000$
-   $1 \leq M \leq 2000$
-   $1 \leq A_{i,j} \leq 999$
-   All input values are integers.

Sample 1 Input

3 3
1 2 3
1 3 4
2 3 4

Sample 1 Output

1
The pair (i,j)=(1,2) satisfies the condition because there is only one index k such that $A_{1,k}=A_{2,k}$, which is k=1.
The pairs (i,j)=(1,3),(2,3) do not satisfy the condition, making (1,2) the only pair that does.

Sample 2 Input

6 5
8 27 27 10 24
27 8 2 4 5
15 27 26 17 24
27 27 27 27 27
27 7 22 11 27
19 27 27 27 27

Sample 2 Output

5

Source/Category