Problem10095--ABC347 —— F - Non-overlapping Squares

10095: ABC347 —— F - Non-overlapping Squares

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There is an $N\times N$ grid, and the cell at the $i$-th row from the top and the $j$-th column from the left $(1\leq i,j\leq N)$ contains the integer $A _ {i,j}$.

You are given an integer $M$. When choosing three non-overlapping $M\times M$ grids, find the maximum possible sum of the integers written in the chosen grids.

Formal definition of the problem A $6$\-tuple of integers $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$ is called a **good $6$\-tuple** when it satisfies the following three conditions:

-   $1\leq i _ k\leq N-M+1\ (k=1,2,3)$
-   $1\leq j _ k\leq N-M+1\ (k=1,2,3)$
-   If $k\neq l\ (k,l\in\lbrace1,2,3\rbrace)$, the sets $\lbrace(i,j)\mid i _ k\leq i\lt i _ k+M\wedge j _ k\leq j\lt j _ k+M\rbrace$ and $\lbrace(i,j)\mid i _ l\leq i\lt i _ l+M\wedge j _ l\leq j\lt j _ l+M\rbrace$ do not intersect.

Find the maximum value of $\displaystyle \sum _ {k=1} ^ 3\sum _ {i=i _ k} ^ {i _ k+M-1}\sum _ {j=j _ k} ^ {j _ k+M-1}A _ {i,j}$ for a good $6$\-tuple $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$. It can be shown that a good $6$\-tuple exists under the constraints of this problem.

Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$A _ {1,1}$ $A _ {1,2}$ $\ldots$ $A _ {1,N}$
$A _ {2,1}$ $A _ {2,2}$ $\ldots$ $A _ {2,N}$
 $\vdots$   $\ \vdots$  $\ddots$  $\vdots$
$A _ {N,1}$ $A _ {N,2}$ $\ldots$ $A _ {N,N}$
```

Output

Print the answer.

Constraints

-   $2\leq N\leq 1000$
-   $1\leq M\leq N/2$
-   $0\leq A _ {i,j}\leq10 ^ 9$
-   All input values are integers.

Sample 1 Input

7 3
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5

Sample 1 Output

154
From the given grid, if we choose three 3×3 grids as shown in the figure below (this corresponds to setting $(i_1,j_1,i_2,j_2,i_3,j_3)=(1,5,2,1,5,2)$), the sum of the numbers written in the chosen grids will be 154.

There is no way to make the sum 155 or greater while satisfying the conditions in the problem statement, so print 154.

Sample 2 Input

7 1
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5

Sample 2 Output

27
The following choice is optimal.

Sample 3 Input

16 4
74 16 58 32 97 52 43 51 40 58 13 24 65 11 63 29
98 75 40 77 15 50 83 85 35 46 38 37 56 38 63 55
95 42 10 70 53 40 25 10 70 32 33 19 52 79 74 58
33 91 53 11 65 63 78 77 81 46 81 63 11 82 55 62
39 95 92 69 77 89 14 84 53 78 71 81 66 39 96 29
74 26 60 55 89 35 32 64 17 26 74 92 84 33 59 82
23 69 10 95 94 14 58 58 97 95 62 58 72 55 71 43
93 77 27 87 74 72 91 37 53 80 51 71 37 35 97 46
81 88 26 79 78 30 53 68 83 28 59 28 74 55 20 86
93 13 25 19 53 53 17 24 69 14 67 81 10 19 69 90
88 83 62 92 22 31 27 34 67 48 42 32 68 14 96 87
44 69 25 48 68 42 53 82 44 42 96 31 13 56 68 83
63 87 24 75 16 70 63 99 95 10 63 26 56 12 77 49
94 83 69 95 48 41 40 97 45 61 26 38 83 91 44 31
43 69 54 64 20 60 17 15 62 25 58 50 59 63 88 70
72 95 21 28 41 14 77 22 64 78 33 55 67 51 78 40

Sample 3 Output

3295
The following choice is optimal.

Source/Category