Problem10089--ABC346 —— G - Alone

10089: ABC346 —— G - Alone

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given an integer sequence $A = (A_1, A_2, \ldots, A_N)$.

Find the number of pairs of integers $(L, R)$ that satisfy the following conditions:

-   $1 \leq L \leq R \leq N$
-   There is a number that appears exactly once among $A_L, A_{L + 1}, \ldots, A_R$. More precisely, there is an integer $x$ such that exactly one integer $i$ satisfies $A_i = x$ and $L \leq i \leq R$.

Input

The input is given from Standard Input in the following format:

```
$N$
$A_1$ $A_2$ $\ldots$ $A_N$
```

Output

Print the answer.

Constraints

-   $2 \leq N \leq 2 \times 10^5$
-   $1 \leq A_i \leq N$
-   All input values are integers.

Sample 1 Input

5
2 2 1 2 1

Sample 1 Output

12
12 pairs of integers satisfy the conditions: (L,R)=(1,1),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(3,5),(4,4),(4,5),(5,5).

Sample 2 Input

4
4 4 4 4

Sample 2 Output

4

Sample 3 Input

10
1 2 1 4 3 3 3 2 2 4

Sample 3 Output

47

Source/Category