Problem10061--ABC341 —— G - Highest Ratio

10061: ABC341 —— G - Highest Ratio

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB  Special Judge

Description

You are given a sequence $A=(A_1,A_2,\ldots,A_N)$ of length $N$.  
For each $k=1,2,\ldots,N$, solve the following problem:

-   Find the maximum possible average value of the $k$-th to $r$-th terms of the sequence $A$ when choosing an integer $r$ such that $k\leq r\leq N$.  
    Here, the average value of the $k$-th to $r$-th term of the sequence $A$ is defined as $\frac{1}{r-k+1}\displaystyle\sum_{i=k}^r A_i$.

Input

The input is given from Standard Input in the following format:

```
$N$
$A_1$ $A_2$ $\ldots$ $A_N$
```

Output

Print $N$ lines.  
The $i$-th line $(1\leq i\leq N)$ should contain the answer to the problem for $k=i$.  
Your output will be considered correct if, for every line, the absolute or relative error of the printed value from the true value is at most $10^{-6}$.

Constraints

-   $1\leq N\leq 2\times 10^5$
-   $1\leq A_i\leq 10^6$
-   All input values are integers.

Sample 1 Input

5
1 1 4 5 3

Sample 1 Output

2.80000000
3.33333333
4.50000000
5.00000000
3.00000000
For k=1, the possible choices for r are r=1,2,3,4,5, and the average value for each of them is:
  • $\frac{1}{1}=1$
  • $\frac{1}{2}(1+1)=1$
  • $\frac{1}{3}(1+1+4)=2$
  • $\frac{1}{4}(1+1+4+5)=2.75$
  • $\frac{1}{5}(1+1+4+5+3)=2.8$
Thus, the maximum is achieved when r=5, and the answer for k=1 is 2.8.
Similarly, for k=2,3,4,5, the maximum is achieved when r=4,4,4,5, respectively, with the values of $\frac{10}{3}=3.333…, \frac{9}{2}=4.5, \frac{5}{1}=5, \frac{3}{1}=3$.

Sample 2 Input

3
999999 1 1000000

Sample 2 Output

999999.00000000
500000.50000000
1000000.00000000

Source/Category