Problem10053--ABC340 —— F - S = 1

10053: ABC340 —— F - S = 1

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given integers $X$ and $Y$, which satisfy at least one of $X \neq 0$ and $Y \neq 0$.  
Find a pair of integers $(A, B)$ that satisfies all of the following conditions. If no such pair exists, report so.

-   $-10^{18} \leq A, B \leq 10^{18}$
-   The area of the triangle with vertices at points $(0, 0), (X, Y), (A, B)$ on the $xy$\-plane is $1$.

Input

The input is given from Standard Input in the following format:

```
$X$ $Y$
```

Output

If there is a pair of integers $(A, B)$ that satisfies the conditions, print it in the following format:

```
$A$ $B$
```

Otherwise, print `-1`.

Constraints

-   $-10^{17} \leq X, Y \leq 10^{17}$
-   $(X, Y) \neq (0, 0)$
-   $X$ and $Y$ are integers.

Sample 1 Input

3 5

Sample 1 Output

1 1
The area of the triangle with vertices at points (0,0),(3,5),(1,1) is 1. Thus, (A,B)=(1,1) satisfies the conditions.

Sample 2 Input

-2 0

Sample 2 Output

0 1

Sample 3 Input

8752654402832944 -6857065241301125

Sample 3 Output

-1

Source/Category