Problem10046--ABC339 —— F - Product Equality

10046: ABC339 —— F - Product Equality

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given $N$ integers $A_1, A_2, \dots, A_N$.  
Find the number of triples of integers $(i, j, k)$ that satisfy the following conditions:

-   $1 \le i, j, k \le N$
-   $A_i \times A_j = A_k$

Input

The input is given from Standard Input in the following format:

```
$N$
$A_1$
$A_2$
$\vdots$
$A_N$
```

Output

Print the answer as an integer.

Constraints

-   $1 \le N \le 1000$
-   $1 \le A_i < 10^{1000}$

Sample 1 Input

5
2
3
6
12
24

Sample 1 Output

6
The following six triples ((i,j,k) satisfy the conditions in the problem statement:
  • (1,2,3)
  • (1,3,4)
  • (1,4,5)
  • (2,1,3)
  • (3,1,4)
  • (4,1,5)

Sample 2 Input

11
1
2
3
4
5
6
123456789123456789
123456789123456789
987654321987654321
987654321987654321
121932631356500531347203169112635269

Sample 2 Output

40
Note that the values of each integer $A_i$ can be huge.

Sample 3 Input

9
4
4
4
2
2
2
1
1
1

Sample 3 Output

162
Note that there may be duplicates among the values of $A_i$.

Source/Category