Problem10025--ABC337 —— G - Tree Inversion

10025: ABC337 —— G - Tree Inversion

[Creator : ]
Time Limit : 2.000 sec  Memory Limit : 512 MiB

Description

You are given a tree $T$ with $N$ vertices: vertex $1$, vertex $2$, $\ldots$, vertex $N$. The $i$-th edge $(1\leq i\lt N)$ connects vertices $u_i$ and $v_i$.

For a vertex $u$ in $T$, define $f(u)$ as follows:

-   $f(u):=$ The number of pairs of vertices $v$ and $w$ in $T$ that satisfy the following two conditions:
    -   Vertex $w$ is contained in the path connecting vertices $u$ and $v$.
    -   $v\lt w$.

Here, vertex $w$ is contained in the path connecting vertices $u$ and $v$ also when $u=w$ or $v=w$.

Find the values of $f(1),f(2),\ldots,f(N)$.

Input

The input is given from Standard Input in the following format:

```
$N$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_{N-1}$ $v_{N-1}$
```

Output

Print the values of $f(1),f(2),\ldots,f(N)$ in this order, separated by spaces.

Constraints

-   $2\leq N\leq2\times10^5$
-   $1\leq u_i\leq N\ (1\leq i\leq N)$
-   $1\leq v_i\leq N\ (1\leq i\leq N)$
-   The given graph is a tree.
-   All input values are integers.

Sample 1 Input

7
1 2
2 3
2 4
4 5
4 6
6 7

Sample 1 Output

0 1 3 4 8 9 15
The given tree is as follows:

For example, f(4)=4. Indeed, for u=4, four pairs (v,w)=(1,2),(1,4),(2,4),(3,4) satisfy the conditions.

Sample 2 Input

15
14 9
9 1
1 6
6 12
12 2
2 15
15 4
4 11
11 13
13 3
3 8
8 10
10 7
7 5

Sample 2 Output

36 29 32 29 48 37 45 37 44 42 33 36 35 57 35
The given tree is as follows:

The value of f(14) is 57, which is the inversion number of the sequence (14,9,1,6,12,2,15,4,11,13,3,8,10,7,5).

Sample 3 Input

24
7 18
4 2
5 8
5 15
6 5
13 8
4 6
7 11
23 16
6 18
24 16
14 21
20 15
16 18
3 16
11 10
9 11
15 14
12 19
5 1
9 17
5 22
11 19

Sample 3 Output

20 20 41 20 21 20 28 28 43 44 36 63 40 46 34 40 59 28 53 53 66 42 62 63

Source/Category